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MODULE –I  

INTRODUCTION TO ELECTRICAL CIRCUITS 

 
INTRODUCTION: 
 

An Electric circuit is an interconnection of various elements in which there is at least one closed 

path in which current can flow. An Electric circuit is used as a component for any engineering system. 

The performance of any electrical device or machine is always studied by drawing its electrical 

equivalent circuit. By simulating an electric circuit, any type of system can be studied for e.g., 

mechanical, hydraulic thermal, nuclear, traffic flow, weather prediction etc. 

All control systems are studied by representing them in the form of electric circuits. The analysis, of 

any system can be learnt by mastering the techniques of circuit theory. 

The analysis of any system can be learnt by mastering the techniques of circuit theory. 

 

Elements of an Electric circuit: 

 

An Electric circuit consists of following types of elements. 

 

Active elements: 

 

Active elements are the elements of a circuit which possess energy of their own and can impart it to 

other element of the circuit. 

Active elements are of two types 
 

a) Voltage source b) Current source 

 

A Voltage source has a specified voltage across its terminals, independent of current flowing through 

it. 

A current source has a specified current through it independent of the voltage appearing across it. 

 

Passive Elements: 

 

The passive elements of an electric circuit do not possess energy of their own. They receive 

energy from the sources. The passive elements are the resistance, the inductance and the capacitance. 

When electrical energy is supplied to a circuit element, it will respond in one and more of the following 

ways. 

If the energy is consumed, then the circuit element is a pure resistor. 
 

If the energy is stored in a magnetic field, the element is a pure inductor. 
 

And if the energy is stored in an electric field, the element is a pure capacitor. 



Linear and Non-Linear Elements. 

 

Linear elements show the linear characteristics of voltage & current. That is its voltage-current 

characteristics are at all-times a straight-line through the origin. 

For example, the current passing through a resistor is proportional to the voltage applied 

through its and the relation is expressed as V I or V = IR. A linear element or network is one which 

satisfies the principle of superposition, i.e., the principle of homogeneity and additivity. 

Resistors, inductors and capacitors are the examples of the linear elements and their 

properties do not change with a change in the applied voltage and the circuit current. 

Non linear element’s V-I characteristics do not follow the linear pattern i.e. the current passing 

through it does not change linearly with the linear change in the voltage across it. Examples are the 

semiconductor devices such as diode, transistor. 

 

Bilateral and Unilateral Elements: 

 

An element is said to be bilateral, when the same relation exists between voltage and current 

for the current flowing in both directions. 

Ex: Voltage source, Current source, resistance, inductance & capacitance. 

The circuits containing them are called bilateral circuits. 

An element is said to be unilateral, when the same relation does not exist between voltage 

and current when current flowing in both directions. The circuits containing them are called unilateral 

circuits. 

Ex: Vacuum diodes, Silicon Diodes, Selenium Rectifiers etc. 

 

Lumped and Distributed Elements 

 

Lumped elements are those elements which are very small in size & in which simultaneous 

actions takes place. Typical lumped elements are capacitors, resistors, inductors. 

Distributed elements are those which are not electrically separable for analytical purposes. 
 

For example a transmission line has distributed parameters along its length and may extend for 

hundreds of miles. 

The circuits containing them are called unilateral circuits. 



Types of Sources: 
 

Independent & Dependent sources: 

 

If the voltage of the voltage source is completely independent source of current and the current 

of the current source is completely independent of the voltage, then the sources are called as 

independent sources. 

The special kind of sources in which the source voltage or current depends on some other 

quantity in the circuit which may be either a voltage or a current anywhere in the circuit are called 

Dependent sources or Controlled sources. 

There are four possible dependent sources: 

 

a. Voltage dependent Voltage source 

b. Current dependent Current source 

c. Voltage dependent Current source 

d. Current dependent Current source 
 

 

 



 

The constants of proportionalities are written as B, g, a, r in which B & a has no units, r has units 

of ohm & g units of mhos. 

Independent sources actually exist as physical entities such as battery, a dc generator & an 

alternator. But dependent sources are used to represent electrical properties of electronic devices 

such as OPAMPS & Transistors. 

Ideal & Practical sources: 

 

1. An ideal voltage source is one which delivers energy to the load at a constant terminal 

voltage, irrespective of the current drawn by the load. 

2. An ideal current source is one, which delivers energy with a constant current to the load, 

irrespective of the terminal voltage across the load. 

3. A Practical voltage source always possesses a very small value of internal resistance r. The 

internal resistance of a voltage source is always connected in series with it & for a current 

source; it is always connected in parallel with it. As the value of the internal resistance of a 

practical voltage source is very small, its terminal voltage is assumed to be almost constant 

within a certain limit of current flowing through the load. 

4. A practical current source is also assumed to deliver a constant current, irrespective of the 

terminal voltage across the load connected to it. 
 



Ideal voltage source connected in series: 
 

 

 

 

 
 

 

 

The equivalent single ideal voltage some is given by V= V1 + V2 
 

Any number of ideal voltage sources connected in series can be represented by a single ideal 

voltage some taking in to account the polarities connected together in to consideration. 

Practical voltage source connected in series: 
 

 

 

Ideal voltage source connected in parallel: 
 

 

 

4 



 

When two ideal voltage sources of emf’s V1 & V2 are connected in parallel, what voltage appears 

across its terminals is ambiguous. 

Hence such connections should not be made. 
 

However if V1 = V2= V, then the equivalent voltage some is represented by V. 
 

In that case also, such a connection is unnecessary as only one voltage source serves the purpose. 

 

 
Practical voltage sources connected in parallel: 

 

 
 

 

Equivalent Circuit Single Equivalent 

Voltage Source 

 

 
Ideal current sources connected in series: 

 

 

 
When ideal current sources are connected in series, what current flows through the line is 

ambiguous. Hence such a connection is not permissible. 

However, it I1 = I2 = I, then the current in the line is I. 
 

But, such a connection is not necessary as only one current source serves the purpose. 



Practical current sources connected in series: 
 

 

 

 

 
 

 

Ideal current sources connected in parallel 

 

 
 

 

 
Two ideal current sources in parallel can be replaced by a single equivalent ideal current source. 

 

 
Practical current sources connected in parallel 

 



 

Source transformation: 
 

A current source or a voltage source drives current through its load resistance and the 

magnitude of the current depends on the value of the load resistance. 

Consider a practical voltage source and a practical current source connected to the same load 

resistance RL as shown in the figure 

 
 

 

R1’s in figure represents the internal resistance of the voltage source VS and current source IS. 
 

Two sources are said to be identical, when they produce identical terminal voltage VL and load current 

IL. 

The circuit in figure represents a practical voltage source & a practical current source respectively, with 

load connected to both the sources. 

The terminal voltage VL and load current IL across their terminals are same. 
 

Hence the practical voltage source & practical current source shown in the dotted box of figure are 

equal. 

The two equivalent sources should also provide the same open circuit voltage & short circuit current. 

 

 
From fig (a) From fig (b) 

 

IL = I 

IL = 
 

 

 

= I 

 
 

VS = IR or I = 



Hence a voltage source Vs in series with its internal resistance R can be converted into a current source 
 

 

I = , with its internal resistance R connected in parallel with it. Similarly a current source I 

in parallel with its internal resistance R can be converted into a voltage source V = IR in series with its 

internal resistance R. 

 

R-L-C Parameters: 
 

1. Resistance: 

 

Resistance is that property of a circuit element which opposes the flow of electric current and in 

doing so converts electrical energy into heat energy. 

It is the proportionality factor in ohm’s law relating voltage and current. 
 

Ohm’s law states that the voltage drop across a conductor of given length and area of cross section is 

directly proportional to the current flowing through it. 

R œ i 

V=Ri 

i=  = GV 

Where the reciprocal of resistance is called conductance G. The unit of resistance is ohm and the unit 

of conductance is mho or Siemens. 

When current flows through any resistive material, heat is generated by the collision of electrons with 

other atomic particles. The power absorbed by the resistor is converted to heat and is given by the 

expression 

P= vi= i2R where i is the resistor in amps, and v is the voltage across the resistor in volts. 

 

Energy lost in a resistance in time t is given by 

 

W =  t 

2. Inductance: 

 

Inductance is the property of a material by virtue of which it opposes any change of magnitude and 

direction of electric current passing through conductor. A wire of certain length, when twisted into a 

coil becomes a basic conductor. A change in the magnitude of the current changes the electromagnetic 

field. 



Increase in current expands the field & decrease in current reduces it. A change in current produces 
 

change in the electromagnetic field. This induces a voltage across the coil according to Faradays laws of 

Electromagnetic Induction. 

 

Induced Voltage V = L 
 

V = Voltage across inductor in volts 
 

I = Current through inductor in amps 

 
 

di = v dt 
 

Integrating both sides, 
 

Power absorbed by the inductor P = VI = Li 
 

Energy stored by the inductor 

W=  = dt = 
 

 

W = 

Conclusions: 

1) V = L  
 

The induced voltage across an inductor is zero if the current through it is constant. That 

means an inductor acts as short circuit to dc. 

2) For minute change in current within zero time (dt = 0) gives an infinite voltage across the 

inductor which is physically not at all feasible. In an inductor, the current cannot change abruptly. An 

inductor behaves as open circuit just after switching across dc voltage. 

 

3) The inductor can store finite amount of energy, even if the voltage across the inductor is zero. 

4) A pure inductor never dissipates energy, it only stores it. Hence it is also called as a non– 

dissipative passive element. However, physical inductor dissipates power due to internal resistance. 



 

Ex: The current in a 2H inductor raises at a rate of 2A/s .Find the voltage across the inductor the energy stored in the magnetic 

field at after 2sec. 

 

Sol: 

V = L  
 

= 2X2 = 4V 



 

 

MODULE-II 

NETWORK TOPOLOGY 

 

An important step in the procedure for solving any circuit problem consists first in 

selecting a number of independent branch currents as (known as loop currents or 

mesh currents) variables, and then to express all branch currents as functions of the 

chosen set of branch currents. Alter- nately a number of independent node pair 

voltages may be selected as variables and then express all existing node pair voltages 

in terms of these selected variables. 

For simple networks involving a few elements, there is no difficulty in selecting the 

inde- pendent branch currents or the independent node-pair voltages. The set of 

linearly independent equations can be written by inspection. However for large scale 

networks particularly modern electronic circuits such as integrated circuits and 

microcircuits with a larger number of inter- connected branches, it is almost 

impossible to write a set of linearly independent equations by inspection or by mere 

intuition. The problem becomes quite difficult and complex. A system- atic and step by 

step method is therefore required to deal with such networks. Network topology 

(graph theory approach) is used for this purpose. By this method, a set of linearly 

independent loop or node equations can be written in a form that is suitable for a 

computer solution. 

 
2.1 Terms and definitions 

The description of networks in terms of their geometry is referred to as network 

topology. The adequacy of a set of equations for analyzing a network is more easily 

determined topologically than algebraically. 

Graph (or linear graph): A network graph is a network in which all nodes and loops are 

re- tained but its branches are represented by lines. The voltage sources are replaced 

by short circuits and current sources are replaced by open circuits. (Sources without 

internal impedances or ad- mittances can also be treated in the same way because 

they can be shifted to other branches by E-shift and/or I-shift operations.) 

Branch: A line segment replacing one or more network elements that are connected in series or 

parallel. 

Node: Interconnection of two or more branches. It is a terminal of a branch. Usually 

intercon- nections of three or more branches are nodes. 

Path: A set of branches that may be traversed in an order without passing through the 

same node more than once. 



 

 

Loop: Any closed contour selected in a graph. 

Mesh: A loop which does not contain any other loop within it. 

Planar graph: A graph which may be drawn on a plane surface in such a way that no 

branch passes over any other branch. 

Non-planar graph: Any graph which is not planar. 

Oriented graph: When a direction to each branch of a graph is assigned, the resulting 

graph is called an oriented graph or a directed graph. 

Connected graph: A graph is connected if and only if there is a path between every pair of 

nodes. 

Sub graph: Any subset of branches of the graph. 

Tree: A connected sub-graph containing all nodes of a graph but no closed path. i.e. it 

is a set  of branches of graph which contains no loop but connects every node to every 

other node not necessarily directly. A number of different trees can be drawn for a 

given graph. 

Link: A branch of the graph which does not belong to the particular tree under 

consideration. The links form a sub-graph not necessarily connected and is called the 

co-tree. 

Tree compliment: Totality of links i.e. Co-tree. 

Independent loop: The addition of each link to a tree, one at a time, results one closed 

path called an independent loop. Such a loop contains only one link and other tree 

branches. Obviously, the number of such independent loops equals the number of 

links. 

Tie set: A set of branches contained in a loop such that each loop contains one link and 

the remainder are tree branches. 

Tree branch voltages: The branch voltages may be separated in to tree branch 

voltages and link voltages. The tree branches connect all the nodes. Therefore if the 

tree branch voltages are forced to be zero, then all the node potentials become 

coincident and hence all branch voltages are forced to be zero. As the act of setting 

only the tree branch voltages to zero forces all voltages in the network to be zero, it 

must be possible to express all the link voltages uniquely in terms of tree branch 

voltages. Thus tree branch form an independent set of equations. 

Cut set: A set of elements of the graph that dissociates it into two main portions of a 

network such that replacing any one element will destroy this property. It is a set of 

branches that if removed divides a connected graph in to two connected sub-graphs. 

Each cut set contains one tree branch and the remaining being links. 

Fig. 2.1 shows a typical network with its graph, oriented graph, a tree, co-tree and a non-planar 

graph 
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A non planer graph 
 

Figure 2.1 

 
Relation between nodes, links, and branches 

Let B = Total number of branches in the graph or network 

N = total nodes 

L = link branches 

Then N 1 branches are required to construct a tree because the first branch 
chosen connects two nodes and each additional branch includes one more node. 

Therefore number of independent node pair voltages = N − 1 = number of tree 

branches. Then L = B − (N − 1) = B − N +1  

Number of independent loops = B − N +1  

2.2 Isomorphic graphs 

Two graphs are said to be ismorphic if they 

have the same incidence matrix, though 

they look dif- ferent. It means that they 

have the same num- bers of nodes and the 

same numbers of branches. There is one to 

one correspondence between the 

nodes and one to one correspondence 

between the branches. Fig. 2.2 shows such 

graphs. 

Figure 2.2 
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For a given oriented graph, there are several representative matrices. They are 

extremely important in the analytical studies of a graph, particularly in the computer 

aided analysis and synthesis of large scale networks. 

 
2.2.1 Incidence Matrix An 

It is also known as augmented incidence matrix. The element node incidence matrix A 

indicates in a connected graph, the incidence of elements to nodes. It is an N B matrix 

with elements of An = (akj ) 

akj = 1, when the branch bj is incident to and oriented away from the kth node. 

= −1, when the branch bj is incident to and oriented towards the kth node. 

= 0, when the branch bj is not incident to the kth node. 

As each branch of the graph is incident to exactly two nodes, 

n 

akj = 0 for j = 1, 2, 3, · ··  B. 

k=0 

That is, each column of An has exactly two non zero elements, one being +1 and the 

other 

1. Sum of elements of any column is zero. The columns of An are lineraly dependent. The 

rank of the matrix is less than N . 

Significance of the incidence matrix lies in the fact that it translates all the 

geometrical features in the graph into an algebraic expression. 

Using the incidence matrix, we can write KCL as 

An iB = 0, where iB = branch current vector. 

But these equations are not linearly independent. The rank of the matrix A is N 1. 

This property of An is used to define another matrix called reduced incidence matrix or 

bus incidence matrix. 

For the oriented graph shown in Fig. 2.3(a), the incidence matrix is as follows: 

Nodes ↓ branches 
1 2 3 4 5 

a 

An = b 

c 

d 

−1 1 −1 0 0 
1 0 0 1 0 
0  −1 0 −1 −1 
0 0 1 0 1 
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 0 0 1 0 

2.2.2 Reduced incidence matrix 
Network Topology | 115 

Any node of a connected graph can be selected as a reference node. Then the voltages 

of the other nodes (referred to as buses) can be measured with respect to the 

assigned reference. The matrix obtained from An by deleting the row corresponding to 

the reference node is the element- bus incident matrix A and is called bus incidence 

matrix with dimension (N 1) B. A is rectangular and therefore singular. 

In An, the sum of all elements in each column is zero. This leads to an important 

conclusion that if one row is not known in A, it can be found so that sum of elements of 

each column must be zero. 

From A, we have A iB = 0, which represents a set of linearly independent equations and there 

are N 1 independent node equations. 

For the graph shown in Fig 2.3(a), with d selected as the reference node, the reduced 

incidence matrix is 

Nodes  ↓ branches 
1 2 3 4 5 

a 

A =  b 

c 

⎡
−1 1 −1 0 0 

⎤ 
0  −1 0 −1 −1 
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Note that the sum of elements of each column in A need not be zero 

Note that if branch current vector, 

Then A iB = 0 representing a set of independent node equations. 

Another important property of A is that determinant AAT gives the number of 

possible trees of the network. If A = [At : Ai] where At and Ai are sub-matrices of A 

such that At contains only twigs, then det At is either+1 or 1. 

To verify the property that det AAT gives the number of all possible trees, consider the 
reduced incidence matrix A of the example considered. That is, 

 
 

 

    

 

 

2.3 Cut-set matrix and node pair potentials 
 

Figure 2.5(a)  A directed graph Figure 2.5(b) Two separate graphs created by 

the cut set {1, 2, 5, 6} 

A cut-set of a graph is a set of branches whose removal, cuts the connected graph 

into two parts such that the replacement of any one branch of the cut-set renders the 

two parts connected. For example, two separated graphs are obtained for the graph of 

Fig. 2.5(a) by selecting the cut-set consisting of branches [1, 2, 5, 6]. These seperated 

graphs are as shown in Fig. 2.5(b). 

Just as a systematic method exists for the selection of a set of independent loop 

current vari- ables, a similar process exists for the selection of a set of independent node 

pair potential variables. 



 

 

It is already known that the cut set is a minimal set of branches of the graph, removal of which 

divides the graph in to two connected sub-graphs.  Then it separates the nodes of the graph in  to 

two groups, each being one of the two sub-graphs. Each branch of the tie-set has one of its 

terminals incident at a node on one sub-graph. Selecting the orientation of the cut set same as that 

of the tree branch of the cut set, the cut set matrix is constructed row-wise taking one cut set at a 

time. Without link currents, the network is inactive. In the same way, without node pair voltages 

the network is active. This is because when one twig voltage is made active with all other twig 

voltages are zero, there is a set of branches which becomes active. This set is called cut-set. This set 

is obtained by cutting the graph by a line which cuts one twig and some links. The algebraic sum of 

these branch currents is zero. Making one twig voltage active in turn, we get entire set of node 

equations. 

This matrix has current values, 

    = 1, if branch is in the cut-set with orientation same as that of tree branch. 

= 1, if branch is in the cut-set with orientation opposite to that of tree branch. 

= 0, if branch is not in the cut-set. and 

dimension is ( 1) . 

Row-by-row reading, it gives the     at each node and therefore we have QJ  = 0. The procedure 

to write cut-set matrix is as follows: 

(i) Draw the oriented graph of a network and choose a tree. 

(ii) Each tree branch forms an independent cut-set. The direction of this cut-set is same as that of the tree 

branch. Choose each tree branch in turn to obtain the cut set matrix. Isolate the tree element pairs 

and energize each bridging tree branch. Assuming the bridging tree branch potential equals the 

node pair potential, thus regarding it as an independent variable. 

(iii) Use the columns of the cut-set matrix to yield a set of equations relating the branch potentials in 

terms of the node pair potentials. This may be obtained in matrix form as V = QTE  

where and are used to indicate branch potential and node voltage respectively. 

In the example shown in Fig 2.5 (c), (3, 4, 5) are tree branches. Links are shown in dotted lines. If two tree 
branch voltages in 3 and 4 are made zero, the nodes and are at the same potential. Similarly the nodes and 
are at the same potential. The graph is reduced to the form shown in Fig. 2.5(d) containing only the cut-set 
branches. 

Matrices Associated with Network Graphs 

Following are the three matrices that are used in Graph theory. 

• Incidence Matrix 

• Fundamental Loop Matrix 

• Fundamental Cut set Matrix 



 

 

Incidence Matrix 

An Incidence Matrix represents the graph of a given electric circuit or network. Hence, it is possible to 
draw the graph of that same electric circuit or network from the incidence matrix. 

We know that graph consists of a set of nodes and those are connected by some branches. So, the 
connecting of branches to a node is called as incidence. Incidence matrix is represented with the 
letter A. It is also called as node to branch incidence matrix or node incidence matrix. 

If there are ‘n’ nodes and ‘b’ branches are present in a directed graph, then the incidence matrix will 
have ‘n’ rows and ‘b’ columns. Here, rows and columns are corresponding to the nodes and branches 
of a directed graph. Hence, the order of incidence matrix will be n × b. 

The elements of incidence matrix will be having one of these three values, +1, -1 and 0. 

• If the branch current is leaving from a selected node, then the value of the element will be +1. 

• If the branch current is entering towards a selected node, then the value of the element will be -1. 

• If the branch current neither enters at a selected node nor leaves from a selected node, then the value of 
element will be 0. 

Procedure to find Incidence Matrix 

Follow these steps in order to find the incidence matrix of directed graph. 

• Select a node at a time of the given directed graph and fill the values of the elements of incidence matrix 
corresponding to that node in a row. 

• Repeat the above step for all the nodes of the given directed graph. 

Example 

Consider the following directed graph. 

 



 

 

The incidence matrix corresponding to the above directed graph will be 

Matrices Associated with Network Graphs 

Following are the three matrices that are used in Graph theory. 

• Incidence Matrix 

• Fundamental Loop Matrix 

• Fundamental Cut set Matrix 

Incidence Matrix 
An Incidence Matrix represents the graph of a given electric circuit or network. Hence, it is possible to 
draw the graph of that same electric circuit or network from the incidence matrix. 

We know that graph consists of a set of nodes and those are connected by some branches. So, the 
connecting of branches to a node is called as incidence. Incidence matrix is represented with the 
letter A. It is also called as node to branch incidence matrix or node incidence matrix. 

If there are ‘n’ nodes and ‘b’ branches are present in a directed graph, then the incidence matrix will 
have ‘n’ rows and ‘b’ columns. Here, rows and columns are corresponding to the nodes and branches 
of a directed graph. Hence, the order of incidence matrix will be n × b. 

The elements of incidence matrix will be having one of these three values, +1, -1 and 0. 

• If the branch current is leaving from a selected node, then the value of the element will be +1. 

• If the branch current is entering towards a selected node, then the value of the element will be -1. 

• If the branch current neither enters at a selected node nor leaves from a selected node, then the value of 
element will be 0. 

Procedure to find Incidence Matrix 

Follow these steps in order to find the incidence matrix of directed graph. 

• Select a node at a time of the given directed graph and fill the values of the elements of incidence matrix 
corresponding to that node in a row. 

• Repeat the above step for all the nodes of the given directed graph. 

Fundamental Loop Matrix 
Fundamental loop or f-loop is a loop, which contains only one link and one or more twigs. So, the 
number of f-loops will be equal to the number of links. Fundamental loop matrix is represented with 
letter B. It is also called as fundamental circuit matrix and Tie-set matrix. This matrix gives the 
relation between branch currents and link currents. 

If there are ‘n’ nodes and ‘b’ branches are present in a directed graph, then the number of links 
present in a co-tree, which is corresponding to the selected tree of given graph will be b-n+1. 

So, the fundamental loop matrix will have ‘b-n+1’ rows and ‘b’ columns. Here, rows and columns are 
corresponding to the links of co-tree and branches of given graph. Hence, the order of fundamental 
loop matrix will be (b - n + 1) × b. 



 

 

The elements of fundamental loop matrix will be having one of these three values, +1, -1 and 0. 

• The value of element will be +1 for the link of selected f-loop. 

• The value of elements will be 0 for the remaining links and twigs, which are not part of the selected f-loop. 

• If the direction of twig current of selected f-loop is same as that of f-loop link current, then the value of 
element will be +1. 

• If the direction of twig current of selected f-loop is opposite to that of f-loop link current, then the value of 
element will be -1. 

Procedure to find Fundamental Loop Matrix 

Follow these steps in order to find the fundamental loop matrix of given directed graph. 

• Select a tree of given directed graph. 

• By including one link at a time, we will get one f-loop. Fill the values of elements corresponding to this f-loop 
in a row of fundamental loop matrix. 

• Repeat the above step for all links. 

Example 

Take a look at the following Tree of directed graph, which is considered for incidence matrix. 

 

The above Tree contains three branches d, e & f. Hence, the branches a, b & c will be the links of the 
Co-Tree corresponding to the above Tree. By including one link at a time to the above Tree, we will 
get one f-loop. So, there will be three f-loops, since there are three links. These three f-loops are 
shown in the following figure. 



 

 

 

In the above figure, the branches, which are represented with colored lines form f-loops. We will get 
the row wise element values of Tie-set matrix from each f-loop. So, the Tieset matrix of the above 
considered Tree will be 

B=⎡⎣⎢100010001−11001−1−101⎤⎦⎥B=[100−10−10101100010−11] 

The rows and columns of the above matrix represents the links and branches of given directed graph. 
The order of this incidence matrix is 3 × 6. 

The number of Fundamental loop matrices of a directed graph will be equal to the number of Trees 
of that directed graph. Because, every Tree will be having one Fundamental loop matrix. 

Fundamental Cut-set Matrix 
Fundamental cut set or f-cut set is the minimum number of branches that are removed from a graph 
in such a way that the original graph will become two isolated subgraphs. The f-cut set contains 
only one twig and one or more links. So, the number of f-cut sets will be equal to the number of twigs. 

Fundamental cut set matrix is represented with letter C. This matrix gives the relation between 
branch voltages and twig voltages. 

If there are ‘n’ nodes and ‘b’ branches are present in a directed graph, then the number of twigs 
present in a selected Tree of given graph will be n-1. So, the fundamental cut set matrix will have ‘n-1’ 
rows and ‘b’ columns. Here, rows and columns are corresponding to the twigs of selected tree and 
branches of given graph. Hence, the order of fundamental cut set matrix will be (n-1) × b. 

The elements of fundamental cut set matrix will be having one of these three values, +1, -1 and 0. 

• The value of element will be +1 for the twig of selected f-cutset. 

• The value of elements will be 0 for the remaining twigs and links, which are not part of the selected f-cutset. 

• If the direction of link current of selected f-cut set is same as that of f-cutset twig current, then the value of 
element will be +1. 

• If the direction of link current of selected f-cut set is opposite to that of f-cutset twig current, then the value of 
element will be -1. 

Procedure to find Fundamental Cut-set Matrix 



 

 

Follow these steps in order to find the fundamental cut set matrix of given directed graph. 

• Select a Tree of given directed graph and represent the links with the dotted lines. 

• By removing one twig and necessary links at a time, we will get one f-cut set. Fill the values of elements 
corresponding to this f-cut set in a row of fundamental cut set matrix. 

• Repeat the above step for all twigs. 

Fundamental Loop Matrix 

Fundamental loop or f-loop is a loop, which contains only one link and one or more twigs. So, the 
number of f-loops will be equal to the number of links. Fundamental loop matrix is represented with 
letter B. It is also called as fundamental circuit matrix and Tie-set matrix. This matrix gives the 
relation between branch currents and link currents. 

If there are ‘n’ nodes and ‘b’ branches are present in a directed graph, then the number of links 
present in a co-tree, which is corresponding to the selected tree of given graph will be b-n+1. 

So, the fundamental loop matrix will have ‘b-n+1’ rows and ‘b’ columns. Here, rows and columns are 
corresponding to the links of co-tree and branches of given graph. Hence, the order of fundamental 
loop matrix will be (b - n + 1) × b. 

The elements of fundamental loop matrix will be having one of these three values, +1, -1 and 0. 

• The value of element will be +1 for the link of selected f-loop. 

• The value of elements will be 0 for the remaining links and twigs, which are not part of the selected f-loop. 

• If the direction of twig current of selected f-loop is same as that of f-loop link current, then the value of 
element will be +1. 

• If the direction of twig current of selected f-loop is opposite to that of f-loop link current, then the value of 
element will be -1. 

Procedure to find Fundamental Loop Matrix 

Follow these steps in order to find the fundamental loop matrix of given directed graph. 

• Select a tree of given directed graph. 

• By including one link at a time, we will get one f-loop. Fill the values of elements corresponding to this f-loop 
in a row of fundamental loop matrix. 

• Repeat the above step for all links. 

Example 

Take a look at the following Tree of directed graph, which is considered for incidence matrix. 



 

 

 

The above Tree contains three branches d, e & f. Hence, the branches a, b & c will be the links of the 
Co-Tree corresponding to the above Tree. By including one link at a time to the above Tree, we will 
get one f-loop. So, there will be three f-loops, since there are three links. These three f-loops are 
shown in the following figure. 

 

In the above figure, the branches, which are represented with colored lines form f-loops. We will get 
the row wise element values of Tie-set matrix from each f-loop. So, the Tieset matrix of the above 
considered Tree will be 

B=⎡⎣⎢100010001−11001−1−101⎤⎦⎥B=[100−10−10101100010−11] 

The rows and columns of the above matrix represents the links and branches of given directed graph. 
The order of this incidence matrix is 3 × 6. 

The number of Fundamental loop matrices of a directed graph will be equal to the number of Trees 
of that directed graph. Because, every Tree will be having one Fundamental loop matrix. 

Fundamental Cut-set Matrix 

Fundamental cut set or f-cut set is the minimum number of branches that are removed from a graph 
in such a way that the original graph will become two isolated subgraphs. The f-cut set contains 
only one twig and one or more links. So, the number of f-cut sets will be equal to the number of twigs. 



 

 

Fundamental cut set matrix is represented with letter C. This matrix gives the relation between 
branch voltages and twig voltages. 

If there are ‘n’ nodes and ‘b’ branches are present in a directed graph, then the number of twigs 
present in a selected Tree of given graph will be n-1. So, the fundamental cut set matrix will have ‘n-1’ 
rows and ‘b’ columns. Here, rows and columns are corresponding to the twigs of selected tree and 
branches of given graph. Hence, the order of fundamental cut set matrix will be (n-1) × b. 

The elements of fundamental cut set matrix will be having one of these three values, +1, -1 and 0. 

• The value of element will be +1 for the twig of selected f-cutset. 

• The value of elements will be 0 for the remaining twigs and links, which are not part of the selected f-cutset. 

• If the direction of link current of selected f-cut set is same as that of f-cutset twig current, then the value of 
element will be +1. 

• If the direction of link current of selected f-cut set is opposite to that of f-cutset twig current, then the value of 
element will be -1. 

Procedure to find Fundamental Cut-set Matrix 

Follow these steps in order to find the fundamental cut set matrix of given directed graph. 

• Select a Tree of given directed graph and represent the links with the dotted lines. 

• By removing one twig and necessary links at a time, we will get one f-cut set. Fill the values of elements 
corresponding to this f-cut set in a row of fundamental cut set matrix. 

• Repeat the above step for all twigs. 

Example 

Consider the same directed graph , which we discussed in the section of incidence matrix. Select the 
branches d, e & f of this directed graph as twigs. So, the remaining branches a, b & c of this directed 
graph will be the links. 

The twigs d, e & f are represented with solid lines and links a, b & c are represented with dotted lines 
in the following figure. 



 

 

 

By removing one twig and necessary links at a time, we will get one f-cut set. So, there will be three f-
cut sets, since there are three twigs. These three f-cut sets are

  

 

shown in the following figure. 

 

We will be having three f-cut sets by removing a set of twig and links of C1, C2 and C3. We will get the 
row wise element values of fundamental cut set matrix from each f-cut set. 

. 

 

 

 

 

 

 

 

 



 

 

MODULE-III 

MAGNETIC CIRCUITS 

 

Magnetic Circuits: 

Introduction to the Magnetic Field: 

Magnetic fields are the fundamental medium through which energy is converted from one form 

to another in motors, generators and transformers. Four basic principles describe how 

magnetic fields are used in these devices. 

0. A current-carrying conductor produces a magnetic field in the area around it. 

Explained in Detail by Fleming’s Right hand rule and Amperes Law. 

1. A time varying magnetic flux induces a voltage in a coil of wire if it passes through that coil. 

(basis of Transformer action) 

Explained in detail by the Faradays laws of Electromagnetic Induction. 

2. A current carrying conductor in the presence of a magnetic field has a force induced in it ( Basis 

of Motor action) 

3. A moving wire in the presence of a magnetic field has a voltage induced in it ( Basis of 

Generator action) 

We will be studying in this unit the first two principles in detail and the other two principles in 

the next unit on DC machines. 

Two basic laws governing the production of a magnetic field by a current carrying conductor : 

The direction of the magnetic field produced by a current carrying conductor is given by the 

Flemings Right hand rule and its’ amplitude is given by the Ampere’s Law. 

Flemings right hand rule: Hold the conductor carrying the current in your right hand such that 

the Thumb points along the wire in the direction of the flow of current, then the fingers will 

encircle the wire along the lines of the Magnetic force. 
 

Ampere’s Law : The line integral of the magnetic field intensity H around a closed magnetic 

path is equal to the total current enclosed by the path. 

 



 

 

This is the basic law which gives the relationship between the Magnetic field Intensity H and  

the current I and is mathematically expressed as 

  �. 
� = I net 

where H is the magnetic field intensity produced by the current Inet and dl is a differential 

element of length along the path of integration. H is measured in Ampere-turns per meter. 

 

 

Important parameters and their relation in magnetic circuits : 

• Consider a current carrying conductor wrapped around a ferromagnetic core as shown in the 

figure below . 

 

• Applying Ampere’s law, the total amount of magnetic field induced will be proportional to the 

amount of current flowing through the conductor wound with N turns around the 

ferromagnetic material as shown. Since the core is made of ferromagnetic material, it is 

assumed that a majority of the magnetic field will be confined to the core. 

• The path of integration in this case as per the Ampere’s law is the mean path length of the core, 

lC. The current passing within the path of integration Inet is then Ni, since the coil of wire cuts 

the path of integration N times while carrying the current  i. Hence  Ampere’s  Law becomes : 

Hlc = Ni 

Therefore H = Ni/lc 

 

 
• In this sense, H (Ampere turns per meter) is known as the effort required to induce a magnetic 

field. The strength of the magnetic field flux produced in the core also depends on the material 

of the core. Thus: B = µH where 

B = magnetic flux density [webers per square meter, or Tesla (T)] 

μ= magnetic permeability of material (Henrys per meter) 

H = magnetic field intensity (ampere-turns per meter) 

• The constant µ may be further expanded to include relative permeability which can be defined 

as below: 

µ r = µ /µo 



 

 

where µo = permeability of free space (equal to that of air) 

• Hence the permeability value is a combination of the relative permeability and the permeability 

of free space. The value of relative permeability is dependent upon the type of material used. 

The higher the amount permeability, the higher the amount of flux induced in the core. Relative 

permeability is a convenient way to compare the magnetizability of materials. 

• Also, because the permeability of iron is so much higher than that of air, the majority of the flux 

in an iron core remains inside the core instead of travelling through the surrounding air, which 

has lower permeability. The small leakage flux that does leave the iron core is important in 

determining the flux linkages between coils and the self-inductances of coils in transformers 

and motors. 

• In a core such as shown in the figure above 

B = µH = µ Ni/lc 

Now, to measure the total flux flowing in the ferromagnetic core, consideration has to 

be made in terms of its cross sectional area (CSA). Therefore: 

 

Φ = 
. 
� where: A = cross sectional area throughout the core. 

Assuming that the flux density in the ferromagnetic core is constant throughout hence 

the equation simplifies to: Φ = B.A 

Taking the previous expression for  B we get Φ = µ NiA/lc 

 

 
Electrical analogy of magnetic circuits: 

The flow of magnetic flux induced in the ferromagnetic core is analogous to the flow of electric 

current in an electrical circuit hence the name magnetic circuit. 

 

 
The analogy is as follows: 

 



 

 

 
(a) Electric Circuit (b) Electrical Analogy of Magnetic Circuit 

Referring to the magnetic circuit analogy, F is denoted as magnetomotive force (mmf) which is 

similar to Electromotive force in an electrical circuit (emf). Therefore, we can say that F is the force 

which pushes magnetic flux around a ferromagnetic core with a value of Ni (refer to ampere’s law). 

Hence F is measured in ampere turns. Hence the magnetic circuit equivalent equation is as shown: 

F = Ø.R  (similar to V=IR) 

We already have the relation Φ = µ NiA/l and using this we get R = F / Φ = Ni/ Φ 

R = Ni /( µ NiA/l) = l/ µ A 

• The polarity of the mmf will determine the direction of flux. To easily determine the direction of 

flux, the ‘right hand curl’ rule is applied: 

When the direction of the curled fingers indicates the direction of current flow the resulting 

thumb direction will show the magnetic flux flow. 

• The element of R in the magnetic circuit analogy is similar in concept to the electrical 

resistance. It is basically the measure of material resistance to the flow of magnetic flux. 

Reluctance in this analogy obeys the rule of electrical resistance (Series and Parallel Rules). 

Reluctance is measured in Ampere-turns per weber. 

• The inverse of electrical resistance is conductance which is a measure of conductivity of a 

material. Similarly the inverse of reluctance is known as permeance P which represents the 

degree to which the material permits the flow of magnetic flux. 

 

 
• By using the magnetic circuit approach, calculations related to the magnetic field in a 

ferromagnetic material are simplified but with a little inaccuracy. 

 

 
Equivalent  Reluctance of a series Magnetic circuit : Reqseries = R1 + R2 + R3 + …. 

 

 
Equivalent  Reluctance of a Parallel Magnetic circuit: 1/Reqparallel = 1/R1 + 1/R2 + 1/R3 + …. 

Electromagnetic Induction and Faraday’s law – Induced Voltage from a Time-Changing 



 

 

Magnetic Field: 

Faraday’s Law: 

Whenever a varying magnetic flux passes through a turn of a coil of wire, voltage will be 

induced in the turn of the wire that is directly proportional to the rate of change of the flux 

linkage with the turn of the coil of wire. 
 

eind ∝ −dØ/dt 

eind = −�. dØ/dt 

The negative sign in the equation above is in accordance to Lenz’ Law which states: 

The direction of the induced voltage in the turn of the coil is such that if the coil is short 

circuited, it would produce a current that would cause a flux which opposes the original change 

of flux. 

And k is the constant of proportionality whose value depends on the system of units chosen. In 

the SI system of units k=1 and the above equation becomes: 

eind = − dØ/dt 

Normally a coil is used with several turns and if there are N number of turns in the coil with the 

same amount of flux flowing through it then: eind = − � dØ/dt 

 
 

Change in the flux linkage NØ of a coil can be obtained in two ways: 
 

1. Coil remains stationary and flux changes with time (Due to AC current like in Transformers and 

this is called Statically induced e.m.f ) 

2. Magnetic flux remains constant and stationary in space, but the coil moves relative to the 

magnetic field so as to create a change in the flux linkage of the coil ( Like in Rotating machines 

and this is a called Dynamically induced e.m.f. 

Self inductance: 

From the Faradays laws of Electromagnetic Induction we have seen that an e.m.f will be 

induced in a conductor when a time varying flux is linked with a conductor and the amplitude of 

the induced e.m.f is proportional to the rate of change of the varying flux. 

If the time varying flux is produced by a coil of N turns then the coil itself links with the time 

varying flux produced by itself and an emf will be induced in the same coil. This is called self 

inductance . 

The flux Ø produced by a coil of N turns links with its own N turns of the coil and hence the  

total flux linkage is equal to NØ = (μ N2 A / l) I [using the expression Φ = µ NiA/l we already 



 

 

developed] Thus we see that the total magnetic flux produced by a coil of N turns and linked 

with itself is proportional to the current flowing through the coil i.e. 

NØ ∝   or   NØ  = L � 

From the Faradays law of electromagnetic Induction, the self induced e.m.f for this coil of N 

turns is given by: 

eind = − � dØ/dt  =  −L dI/dt 

The constant of proportionality L is called the self Inductance of the coil or simply Inductance 

and its value is given by L = (μ N2 A / l). If the radius of the coil is r then: 

L =  (μ N2 πr2 / l) i 

From the above two equations we can see that Self Inductance of a coil can be defined as the 

flux produced per unit current i.e Weber/Ampere (equation1) or the induced emf per unit rate 

of change of current i.e Volt-sec/Ampere (equation 2 ) 

The unit of Inductance is named after Joseph Henry as Henry and is given to these two 

combinations as : 

1H  =  1WbA-1 = 1VsA-1 

Self Inductance of a coil is defined as one Henry if an induced emf of one volt is generated when 

the current in the coil changes at the rate of one Ampere per second. 

Henry is relatively a very big unit of Inductance and we normally use Inductors of the size of mH 

( 10-3 H) or μH (10-3H) 

 

 
Mutual inductance and Coefficient of coupling: 

In the case of Self Inductance an emf is induced in the same coil which produces the varying 

magnetic field. The same phenomenon of Induction will be extended to a separate second coil 

if it is located in the vicinity of the varying magnetic field produced by the first coil. Faradays 

law of electromagnetic Induction is equally applicable to the second coil also. A current flowing 

in one coil establishes a magnetic flux about that coil and also about a second coil nearby but of 

course with a lesser intensity. The time-varying flux produced by the first coil and surrounding 

the second coil produces a voltage across the terminals of the second coil. This voltage is 

proportional to the time rate of change of the current flowing through the first coil. 

Figure (a) shows a simple model of two coils L1 and L2, sufficiently close together that the flux 

produced by a current i1(t) flowing through L1 establishes an open-circuit voltage v2(t) across 

the terminals of L2.Mutual inductance,M21, is defined such that 

v2(t) = M21di1(t)/dt -------------------- [1] 



 

 

 
 

Figure 4.17 (a) A current i1 through L1 produces an open-circuit voltage v2across L2. (b) A 

current i2 through L2 produces an open-circuit voltage v1 across L1. 

 

 
The order of the subscripts on M21 indicates that a voltage response is produced at L2 by a 

current source at L1. If the system is reversed, as indicated 

in fig.(b) then we have 

v1(t) = M12di2(t)/dt ------------------- [2] 

It can be proved that the two mutual inductances M12 and M21 are equal and thus, M12 = M21 = 

M. The existence of mutual coupling between two coils is indicated by a double-headed arrow, 

as shown in Fig. (a )and (b) 

Mutual inductance is measured in Henrys and, like resistance, inductance, and capacitance, is a 

positive quantity. The voltage M di/dt, however, may appear as either a positive or a negative 

quantity depending on whether the current is increasing or decreasing at a particular instant of 

time. 
 

Coefficient of coupling k : Is given by the relation M = k√L1 L2 and its value lies between 0 and 

1. It can assume the maximum value of 1 when the two coils are wound on the same core such 

that flux produced by one coil completely links with the other coil. This is possible in well 

designed cores with high permeability. Transformers are designed to achieve a coefficient of 

coupling of 1. 

 

 
Dot Convention: 

 

 
The polarity of the voltage induced in a coil depends on the sense of winding of the coil. In the 

case of Mutual inductance it is indicated by use of a method called “dot convention”. The dot 



 

 

convention makes use of a large dot placed at one end of each of the two coils which are 

mutually coupled. Sign of the mutual voltage is determined as follows: 

A current entering the dotted terminal of one coil produces an open circuit voltage with a 

positive voltage reference at the dotted terminal of the second coil. 

Thus in Fig(a) i1 enters the dotted terminal of L1, v2 is sensed positively at the dotted terminal of 

L2, and v2 = M di1/dt . 

It may not be always possible to select voltages or currents throughout a circuit so that the 

passive sign convention is everywhere satisfied; the same situation arises with mutual coupling. 

For example, it may be more convenient to represent v2 by a positive voltage reference at the 

undotted terminal, as shown in Fig (b). Then v2 = −M di1/dt . Currents also may not always enter 

the dotted terminal as indicated by Fig (c) and (d). Then we note that: 

A current entering the undotted terminal of one coil provides a voltage that is positively 

sensed at the undotted terminal of the second coil. 
 

 

 
Figure 4.18 : (a) and (b) Current entering the dotted terminal of one coil produces a voltage 

that is sensed positively at the dotted terminal of the second coil. (c) and (d) Current entering 

the undotted terminal of one coil produces a voltage that is sensed positively at the undotted 

terminal of the second coil. 

Important Concepts and formulae: 

Resonance and Series RLC circuit: 

ωr
2 = ω1ω2 = 1/LC ∴ ωr = √ω1ω2 = 1/√LC 

BW = R/2πL 



 

 

Q  =  ωr L / R =  1/ ωr RC and in terms of R,L and C = (1/R) (√L/C) 

Q  =  fr / BW  i.e. inversely proportional to the BW 

Voltage magnification Magnification  =  Q =  VL/V or VC / V 

Important points In Series RLC circuit at resonant frequency: 

• The impedance of the circuit becomes purely resistive and minimum i.e Z = R 

• The current in the circuit becomes maximum 

• The magnitudes of the capacitive Reactance and Inductive Reactance become equal 

• The voltage across the Capacitor becomes equal to the voltage across the Inductor at 

resonance and is Q times higher than the voltage across the resistor 

Resonance and Parallel RLC circuit: 

 

ωr
2 =  ω1ω2  = 1/LC ∴   ωr  =  √ω1ω2  = 1/√LC same as in series RLC circuit 

BW = 1/2π RC 
 

Q  =  R /ωr L =  ωr RC and  in terms of R, L and C = R (√C/L) [ Inverse of what we got 

in Series RLC circuit] 

Q = fr / BW In Parallel RLC also inversely proportional to the BW 
 

Current  Magnification  =  Q =  IL/I or IC / I 

Important points In Parallel RLC circuit at resonant frequency : 

• The impedance of the circuit becomes resistive and maximum i.e Z = R 

• The current in the circuit becomes minimum 

• The magnitudes of the capacitive Reactance and Inductive Reactance become equal 

• The current through the Capacitor becomes equal and opposite to the current through the 

Inductor at resonance and is Q times higher than the current through the resistor 

Magnetic circuits : 

Ampere’s Law: �. 
� = I net and in the case of a simple closed magnetic 

path of a ferromagnetic material it simplifies to Hl = Ni or H = Ni/l 

 

 
Magnetic flux density: B = μH 

Magnetic field intensity: H = Ni/l 

Total magnetic flux intensity: Ø = BA = μHA = μ Ni A / l 



 

 

Reluctance of the magnetic circuit: R = mmf/Flux = Ni/ Ø = l/μA 

 

 
Faradays law of electromagnetic Induction: 

 

 
Self induced e.m.f of a coil of N turns is given by: eind = − � dØ/dt = −L dI/dt where L is the 

inductance of the coil of N turns with radius r and given by L = (μ N2 πr2 / l) i 

Equivalent Reluctance of a series Magnetic circuit: Reqseries = R1 + R2 + R3 + …. 

Equivalent Reluctance of a Parallel Magnetic circuit:  1/Reqparallel = 1/R1 + 1/R2 + 1/R3 + .. 

Coefficient of coupling k Is given by the relation:  M = k√L1 L2 

 

Illustrative examples: 
 

Example 1: A toroidal core of radius 6 cms is having 1000 turns on it. The radius of cross section 

of the core 1cm.Find the current required to establish a total magnetic flux of 0.4mWb.When 

(a) The core is nonmagnetic 

(b) The core is made of iron having a relative permeability of 4000 

 

Solution: 
 

This problem can be solved by the direct application of the following formulae we know in 

magnetic circuits: B = Φ/A = µH and H = Ni/l 

Where 
 

B = magnetic flux density (Wb/mtr2 ) Φ = Total magnetic flux 

(Wb)) 
 

A = Cross sectional area   of  the  core(mtr2) µ = µrµ0 = Permeability 

(Henrys/mtr) µr = Relative permeability of the material ( Dimensionless) 



 

 

C 

C T 

µ0 = free space permeability = 4π x 10-7 Henrys/mtr 

H    = Magenetic field intensity  AT/mtr N = Number of turns of the 

coil 

i     = Current in the coil  (Amps) l = Length of the coil 

(mtrs) 

from the above relations we can get i as 
 

i = H l/N = (1/ µ )(Φ/A ) l / N = (1/ µ )(Φ/ N) l / A = (1/ µ )(Φ/ N) * 2πrT / π r 2 ] = [ 2r Φ / 

µ N r 2 ] 

Where rT is the radius of the toroid and rC is the radius of cross section of the coil 

Now we can calculate the currents in the two cases by substituting the respective values. 

(a)  Here  µ = µ0. Therefore i = ( 2 x 6 x 10-2 x 4 x 10-4 )/ (4π x 10-7 x 1000 x 10-4) = 380 Amps 

(b) Here µ = µrµ0. Therefore i = ( 2 x 6 x 10-2 x 4 x 10-4 )/ (4000 x4π x 10-7 x 1000 x 10-4) = 0.095  

Amps 

Ex.2: (a) Draw the electrical equivalent circuit of the magnetic circuit shown in the figure below. 

The area of the core is 2x2 cm2 .The length of the air gap is 1cm and lengths of the other limbs 

are shown in the figure. The relative permeability of the core is 4000. 

(b) Find the value of the current ‘i’ in the above example which produces a flux density of 1.2 

Tesla in the air gap . The number f turns of the coil are 5000. 
 

 

Solution: (a) 
 

To draw the equivalent circuit we have to find the Reluctances of the various flux paths 

independently. 

The reluctance of the path abcd  is given by: R1 = length of the path abcd /µrµ0A 
 

=   (32x10-2) / (4π x 10-7 x 4000 x 4 x 10-4) =1.59 x 105 AT/Wb 



 

 

The reluctance of the path afed is equal to the reluctance of the path abcd since it has the same 

length, same permeability and same cross sectional area. Thus R1 = R2 

Similarly the reluctance of the path ag (R3) is equal to that of the path hd (R4) and can be 

calculated as:           R3  =   R4  =     (6.5 x 10-2) / (4π x 10-7 x 4000 x 4 x 10-4) = 0.32 x 105 

AT/Wb 

The reluctance of the air gap path gh RG can be calculated as : RG = length of the air gap path 

gh/µ0A 
 

( Here it is to be noted that µ is to be taken as µ0 only and µr should not be included) 

RG   =   (1 x 10-2) / (4π x 10-7 x 4 x 10-4 )  = 198.94 x 105 AT/Wb 

The equivalent electrical circuit is shown in the figure below with the values of the reluctances 

as given below the circuit diagram. 
 

R1   =   R2     =  1.59x105  AT/Wb R3   =   R4 = 0.32x105  AT/Wb RG = 198.94x105 

AT/Wb 
 

Solution: (b) This problem is solved in the following steps: 
 

1. First the flux through the air gap ΦG is found out. The flux in the air gap ΦGis given by the 

product of the Flux density in the air gap B and the cross sectional area of the core in that 

region A . Hence ΦG = B.A = 1.2 x 4 x 10-4 = 0.00048 Wb 

It is to be noted here that  the same flux would be passing through the reluctances  R3,RG &  

R4 

2. Next,the Flux in the path afed Φ2 is to be found out . This can  be found out by noticing that 

the mmf across the reluctance R2 is same as the mmf across the sum of the reluctances R3,RG, 

and R4 coming in parallel with R4 . Hence by equating them we get 

ΦG (  R3 + RG + R4 )  =  Φ2 R2   from which we get Φ2 = ΦG (R3 + RG + R4 ) / R2 
 

Hence Φ2  = [0.00048 x ( 0.32 + 198.94 + 0.32)x105 ] / 1.59x105 = 0.06025 Wb 



 

 

3. Next , the total flux Φ flowing through the reluctance of the path abcd R1 produced by the 

winding is to be found out. This is the sum of the air gap flux ΦG and the flux in the outer limb 

of the core Φ2 : i.e Φ = ΦG + Φ2 = (0.00048 + 0.06025) = 0.0607 Wb 

4. Next , The total mmf F  given by  F  =  Ni  is to be found out . This is also equal to the sum of  

the mmfs across the reluctances R1 and R2 [or (R3 + RG + R4 )] = Φ R1 + Φ2 R2  from which we  

can get ‘i’ as : ‘i’ = (Φ R1 + Φ2 R2 ) / N  =  [0.0607 x 1.59x105  +  0.06025 x 1.59x105]/5000  = 

3.847 Amps 

is   =  3.847 Amps 
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MODULE-IV 

SINGLE PHASE AC CIRCUITS 
 

Introduction to Single Phase AC Circuit: 

In a dc circuit the relationship between the applied voltage V and current flowing through the circuit I is a 

simple one and is given by the expression I = V/R but in an a c circuit this simple relationship does not hold 

good. Variations in current and applied voltage set up magnetic and electrostatic effects respectively and 

these must be taken into account with the resistance of the circuit while determining the quantitative 

relations between current and applied voltage. 

With comparatively low-voltage, heavy- current circuits magnetic effects may be very large, but electrostatic 

effects are usually negligible. On the other hand with high-voltage circuits electrostatic effects may be of 

appreciable magnitude, and magnetic effects are also present. 

Here it has been discussed how the magnetic effects due to variations in current do and electrostatic 

effects due to variations in the applied voltage affect the relationship between the applied voltage and 

current. 

2. Purely Resistive Circuit: 

ADVERTISEMENTS: 

A purely resistive or a non-inductive circuit is a circuit which has inductance so small that at normal 

frequency its reactance is negligible as compared to its resistance. Ordinary filament lamps, water 

resistances etc., are the examples of non-inductive resistances. If the circuit is purely non-inductive, no 

reactance emf (i.e., self- induced or back emf) is set up and whole of the applied voltage is utilised in 

overcoming the ohmic resistance of the circuit. 

Consider an ac circuit containing a non-inductive resistance of R ohms connected across a sinusoidal 

voltage represented by v = V sin wt, as shown in Fig. 4.1 (a). 
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As already said, when the current flowing through a pure resistance changes, no back emf is set 

up, therefore, applied voltage has to overcome the ohmic drop of i R only: 

 

And instantaneous current may be expressed as: 

i = Imax sin ωt 

From the expressions of instantaneous applied voltage and instantaneous current, it is evident that in a 

pure resistive circuit, the applied voltage and current are in phase with each other, as shown by wave and 

phasor diagrams in Figs. 4.1 (b) and (c) respectively. 

Power in Purely Resistive Circuit: 

ADVERTISEMENTS: 

The instantaneous power delivered to the circuit in question is the product of the instantaneous values of 

applied voltage and current. 
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Where V and I are the rms values of applied voltage and current respectively. 

Thus for purely resistive circuits, the expression for power is the same as for dc circuits. From the power 

curve for a purely resistive circuit shown in Fig. 4.1 (b) it is evident that power consumed in a pure resistive 

circuit is not constant, it is fluctuating. 

ADVERTISEMENTS: 

However, it is always positive. This is so because the instantaneous values of voltage and current are 

always either positive or negative and, therefore, the product is always positive. This means that the 

voltage source constantly delivers power to the circuit and the circuit consumes it. 

3. Purely Inductive Circuit: 

An inductive circuit is a coil with or without an iron core having negligible resistance. Practically pure 

inductance can never be had as the inductive coil has always small resistance. However, a coil of thick 

copper wire wound on a laminated iron core has negligible resistance arid is known as a choke coil. 

When an alternating voltage is applied to a purely inductive coil, an emf, known as self-induced emf, is 

induced in the coil which opposes the applied voltage. Since coil has no resistance, at every instant applied 

voltage has to overcome this self-induced emf only. 
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From the expressions of instantaneous applied voltage and instantaneous current flowing through a purely 

inductive coil it is observed that the current lags behind the applied voltage by π/2 as shown in Fig. 4.2 (b) 

by wave diagram and in Fig 4.2 (c) by phasor diagram. 
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Inductive Reactance: 

ωL in the expression Imax = Vmax/ωL is known as inductive reactance and is denoted by XL i.e., XL = ω L 

If L is in henry and co is in radians per second then XL will be in ohms. 

Power in Purely Inductive Circuit: 

Instantaneous power, p = v × i = Vmax sin ω t Imax sin (ωt – π/2) 

Or p = – Vmax Imax sin ω t cos ω t = Vmax
 Imax/2 sin 2 ωt 

The power measured by wattmeter is the average value of p which is zero since average of a sinusoidal 

quantity of double frequency over a complete cycle is zero. Hence in a purely inductive circuit power 

absorbed is zero. 

Physically the above fact can be explained as below: 

During the second quarter of a cycle the current and the magnetic flux of the coil increases and the coil 

draws power from the supply source to build up the magnetic field (the power drawn is positive and the 

energy drawn by the coil from the supply source is represented by the area between the curve p and the 

time axis). The energy stored in the magnetic field during build up is given as Wmax = 1/2 L I2
max. 

In the next quarter the current decreases. The emf of self-induction will, however, tends to oppose its 

decrease. The coil acts as a generator of electrical energy, returning the stored energy in the magnetic field 

to the supply source (now the power drawn by the coil is negative and the curve p lies below the time axis). 

The chain of events repeats itself during the next half cycles. Thus, a proportion of power is continually 

exchanged between the field and the inductive circuit and the power consumed by a purely inductive coil is 

zero. 
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4. Purely Capacitive Circuit: 

When a dc voltage is impressed across the plates of a perfect condenser, it will become charged to full 

voltage almost instantaneously. The charging current will flow only during the period of “build up” and will 

cease to flow as soon as the capacitor has attained the steady voltage of the source. This implies that for a 

direct current, a capacitor is a break in the circuit or an infinitely high resistance. 

In Fig. 4.4 a sinusoidal voltage is applied to a capacitor. During the first quarter-cycle, the applied voltage 

increases to the peak value, and the capacitor is charged to that value. The current is maximum in the 

beginning of the cycle and becomes zero at the maximum value of the applied voltage, so there is a phase 

difference of 90° between the applied voltage and current. During the first quarter-cycle the current flows in 

the normal direction through the circuit; hence the current is positive. 

In the second quarter-cycle, the voltage applied across the capacitor falls, the capacitor loses its charge, 

and current flows through it against the applied voltage because the capacitor discharges into the circuit. 

Thus, the current is negative during the second quarter-cycle and attains a maximum value when the 

applied voltage is zero. 

 

The third and fourth quarter-cycles repeat the events of the first and second, respectively, with the 

difference that the polarity of the applied voltage is reversed, and there are corresponding current changes. 
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In other words, an alternating current flows in the circuit because of the charging and discharging of the 

capacitor. As illustrated in Figs. 4.4 (b) and (c) the current begins its cycle 90 degrees ahead of the voltage, 

so the current in a capacitor leads the applied voltage by 90 degrees – the opposite of the inductance 

current-voltage relationship. 

Let an alternating voltage represented by v = Vmax sin ω t be applied across a capacitor of capacitance C 

farads. 

The expression for instantaneous charge is given as: 

q = C Vmax sin ωt 

Since the capacitor current is equal to the rate of change of charge, the capacitor current may be 

obtained by differentiating the above equation: 

 

From the equations of instantaneous applied voltage and instantaneous current flowing through 

capacitance, it is observed that the current leads the applied voltage by π/2, as shown in Figs. 4.4 (b) and 

(c) by wave and phasor diagrams respectively. 

Capacitive Reactance: 

1/ω C in the expression Imax = Vmax/1/ω C is known as capacitive reactance and is denoted by XC i.e., XC = 

1/ω C 

If C is in farads and ω is in radians/s, then Xc will be in ohms. 

Power in Purely Capacitive Circuit: 
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Hence power absorbed in a purely capacitive circuit is zero. The same is shown graphically in Fig. 4.4 (b). 

The energy taken from the supply circuit is stored in the capacitor during the first quarter- cycle and 

returned during the next. 

The energy stored by a capacitor at maximum voltage across its plates is given by the expression: 

 

This can be realized when it is recalled that no heat is produced and no work is done while current is 

flowing through a capacitor. As a matter of fact, in commercial capacitors, there is a slight energy loss in 

the dielectric in addition to a minute I2 R loss due to flow of current over the plates having definite ohmic 

resistance. 

The power curve is a sine wave of double the supply frequency. Although it raises the power factor from 

zero to 0.002 or even a little more, but for ordinary purposes the power factor is taken to be zero. Obviously 

the phase angle due to dielectric and ohmic losses decreases slightly. 

5. Resistance — Capacitance (R-C) Series Circuit: 

Consider an ac circuit consisting of resistance of R ohms and capacitance of C farads connected in series, 

as shown in Fig. 4.18 (a). 

Let the supply frequency be of fHz and current flowing through the circuit be of I amperes (rms value). 

Voltage drop across resistance, VR = I R in phase with the current. 

Voltage drop across capacitance, VC = I XC lagging behind I by π/2 radians or 90°, as shown in Fig. 4.18 

(b). 

 

The applied voltage, being equal to phasor sum of VR and VC, is given in magnitude by- 

 

The applied voltage lags behind the current by an angle ɸ: 
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If instantaneous voltage is represented by: 

v = Vmax sin ω t 

Then instantaneous current will be expressed as: 

i = Imax sin (ω t + ɸ) 

And power consumed by the circuit is given by: 

P = VI cos ɸ 

 

Voltage triangle and impedance triangle Fig. 4.19 are shown in Figs. 4.19 (a) and 4.19 (b) respectively. 

6. Apparent Power, True Power, Reactive Power and Power Factor: 

The product of rms values of current and voltage, VI is called the apparent power and is measured in volt-

amperes or kilo-volt amperes (kVA). 

The true power in an ac circuit is obtained by multiplying the apparent power by the power factor and is 

expressed in watts or kilo-watts (kW). 

The product of apparent power, VI and the sine of the angle between voltage and current, sin ɸ is called 

the reactive power. This is also known as wattless power and is expressed in reactive volt-amperes or kilo-

volt amperes reactive (kVA R). 



MREC(A) 

 

 

 

 

The above relations can easily be followed by referring to the power diagram shown in Fig. 4.7 (a). 

 

Power factor may be defined as: 

(i) Cosine of the phase angle between voltage and current, 

(ii) The ratio of the resistance to impedance, or 

(iii) The ratio of true power to apparent power. 

The power factor can never be greater than unity. The power factor is expressed either as fraction or as a 

percentage. It is usual practice to attach the word ‘lagging’ or ‘ leading’ with the numerical value of power 

factor to signify whether the current lags behind or leads the voltage. 
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Active Component of Current: 

The current component which is in phase with circuit voltage (i.e., I cos ɸ) and contributes to active or true 

power of the circuit is called the active (wattful or in-phase) component of current. 

Reactive Component of Current: 

The current component which is in quadrature (or 90° out of phase) to circuit voltage (i.e., I sin ɸ) and 

contributes to reactive power of the circuit, is called the reactive (or wattless) component of current. 

Q-Factor of Coil: 

Reciprocal of power factor is known as Q-factor of the coil. It is also called the quality factor or figure of 

merit of a coil. 
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MODULE-V 

Resonance& Locus Diagrams 
 

 

Locus Diagrams with variation of various parameters: 

 

Introduction: In AC electrical circuits the magnitude and phase of the current vector depends 

upon the values of R,L&C when the applied voltage and frequency are kept constant. The path 

traced by the terminus (tip) of the current vector when the parameters R,L&C are varied is 

called the current Locus diagram . Locus diagrams are useful in studying and understanding the 

behavior of the RLC circuits when one of these parameters is varied keeping voltage and 

frequency constant. 

In this unit, Locus diagrams are developed and explained for series RC,RL circuits and Parallel LC 

circuits along with their internal resistances when the parameters R,L and C are varied. 

The term circle diagram identifies locus plots that are either circular or semicircular. The 

defining equations of such circle diagrams are also derived in this unit for series RC and RL 

diagrams. 

In both series RC,RL circuits and parallel LC circuits resistances are taken to be in series with L 

and C to highlight the fact that all practical L and C components will have at least a small value 

of internal resistance. 

 

Series RL circuit with varying Resistance R: 

 

Refer to the series RL circuit shown in the figure (a) below with constant XL and varying R. The 

current IL lags behind the applied voltage V by a phase angle Ɵ = tan-1(XL/R) for a given value of 

R as shown in the figure (b) below. When R=0 we can see that the current is maximum equal to 

V/XL and lies along the I axis with phase angle equal to 900. When R is increased from zero to 

infinity the current gradually reduces from V/XL to 0 and phase angle also reduces from 900 to 

00. As can be seen from the figure, the tip of the current vector traces the path of a semicircle 

with its diameter along the +ve I axis. 
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Fig 4.1(a):  Series RL circuit with Fig 4.1(b): Locus of current vector IL with 

variation of R 

The related equations are: 

IL = V/Z Sin Ɵ = XL/Z or Z = XL/ Sin Ɵ and Cos Ɵ = R / Z 

Therefore IL = (V/XL) Sin Ɵ 

For constant V and XL the above expression for IL is the polar equation of a circle with diameter 

(V/XL) as shown in the figure above. 

 

Circle equation for the RL circuit: (with fixed reactance and variable Resistance): 

 

The X and Y coordinates of the current IL are 

IX =  IL Sin Ɵ IY = IL Cos Ɵ 

From the relations given above and earlier we get 

IX  = (V/Z )( XL/Z)  =  V XL/Z2 ---------------------- 
(1) 

and IY  = (V/Z )( R/Z) =  V R/Z2 -------------------------- 
(2) 

Squaring and adding the above two equations we get 

 
I  2 + I  2   =  V2(X 2+R2) /  Z4 =  (V2Z2 )/  Z4 = V2/Z2 ------------------- 

(3) 
X Y L 

From equation (1) above we have Z2 = V XL / IX and substituting this in the above equation (3) 

we get : 

IX
2 + IY

2   =  V2/ (V XL / IX )  = (V/XL) IX or 

IX
2 + IY

2 − (V/XL) IX = 0 

Adding (V/2XL)2 to both sides ,the above equation can be written as 

[IX − V/2XL ]2+ IY
2 = (V/2XL)2 ------------------------------- 

(4) 

Equation (4) above represents a circle with a radius of (V/2XL) and with it’s coordinates of the 

centre as (V/2XL , 0) 

 

Series RC circuit with varying Resistance R: 

 

Refer to the series RC circuit shown in the figure (a) below with constant XC and varying R. The 

current IC leads the applied voltage V by a phase angle Ɵ = tan-1(XC/R) for a given value of R as 

shown in the figure (b) below. When R=0 we can see that the current is maximum equal to − 
V/XC and lies along the negative I axis with phase angle equal to − 900. When R is increased 

from zero to infinity the current gradually reduces from −V/XC to 0 and phase angle also 

reduces from −900 to 00. As can be seen from the figure, the tip of the current vector traces the 

path of a semicircle but now with its diameter along the negative I axis. 

 

Circle equation for the RC circuit: (with fixed reactance and variable Resistance): 

 

In the same way as we got for the Series RL circuit with varying resistance we can get the circle 

equation for an RC circuit with varying resistance as : 

[IX + V/2XC ]2+ IY
2 = (V/2XC)2 

whose coordinates of the centre are (−V/2XC , 0) and radius equal to V/2XC 
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Fig 4.2 (a): Series RC circuit with Fig 4.2 (b): Locus of current vector IC 

Varying Resistance R  with variation of R 

 

Series RL circuit with varying Reactance XL: 

 

Refer to the series RL circuit shown in the figure (a) below with constant R and varying XL. The 

current IL lags behind the applied voltage V by a phase angle Ɵ = tan-1(XL/R) for a given value of 

R as shown in the figure (b) below. When XL =0 we can see that the current is maximum equal 

to V/R and lies along the +ve V axis with phase angle equal to 00. When XL is increased from 

zero to infinity the current gradually reduces from V/R to 0 and phase angle increases from 00 

to 900. As can be seen from the figure, the tip of the current vector traces the path of a 

semicircle with its diameter along the +ve V axis and on to its right side. 
 

 

Fig 4.3(a): Series RL circuit  with varying XL  Fig 4.3(b) : Locus of current vector IL with  

variation of XL 
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Series RC circuit with varying Reactance XC: 

 

Refer to the series RC circuit shown in the figure (a) below with constant R and varying XC. The 

current IC leads the applied voltage V by a phase angle Ɵ= tan-1(XC/R) for a given value of R as 

shown in the figure (b) below. When XC =0 we can see that the current is maximum equal to  

V/R and lies along the V axis with phase angle equal to 00. When XC is increased from zero to 

infinity the current gradually reduces from V/R to 0 and phase angle increases from 00 to −900. 

As can be seen from the figure, the tip of the current vector traces the path of a semicircle with 

its diameter along the +ve V axis but now on to its left side. 
 

Fig 4.4(a): Series RC circuit with varying XC  Fig 4.4(b): Locus of current vector IC with   

variation of XC 

 

Parallel LC circuits: 

Parallel LC circuit along with its internal resistances as shown in the figures below is considered 

here for drawing the locus diagrams. As can be seen, there are two branch currents IC and IL 

along with the total current I. Locus diagrams of the current IL or IC (depending on which arm is 

varied)and the total current I are drawn by varying RL, RC , XL and XC one by one. 

 

Varying XL: 

 

 

Fig 4.5(a): parallel LC circuit with Internal Resistances RL and RC in series with L (Variable) and 

C (fixed) respectively. 
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The current IC through the capacitor is constant since RC and C are fixed and it leads the voltage 

vector OV by an angle ƟC = tan-1 (XC/RC) as shown in the figure (b). The current IL through the 

inductance is the vector OIL . It’s amplitude is maximum and equal to V/RL when XL is zero and it 

is in phase with the applied voltage V. When XL is increased from zero to infinity it’s amplitude 

decreases to zero and phase will be lagging the voltage by 900. In between, the phase angle will 

be lagging the voltage V by an angle ƟL = tan-1 (XL/RL). The locus of the current vector IL is a 

semicircle with a diameter of length equal to V/RL. Note that this is the same locus what we got 

earlier for the series RL circuit with XL varying except that here V is shown horizontally. 

Now, to get the locus of the total current vector OI we have to add vectorially the currents IC 

and IL . We know that to get the sum of two vectors geometrically we have to place one of the 

vectors staring point (we will take varying amplitude vector IL)at the tip of the other vector (we 

will take constant amplitude vector IC)and then join the start of fixed vector IC to the end of 

varying vector IL. Using this principle we can get the locus of the total current vector OI by 

shifting the IL semicircle starting point O to the end of current vector OIC keeping the two 

diameters parallel. The resulting semi circle ICIBT shown in the figure in dotted lines is the locus 

of the total current vector OI. 

 

 

 

 

Fig 4.5(b): Locus of current vector I in Parallel LC circuit when XL is varied from 0 to ∞ 

 

 

Varying XC: 
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Fig.4.6(a) parallel LC circuit with Internal Resistances RL and RC in series with L (fixed) and C 

(Variable) respectively. 

 

 

The current IL through the inductor is constant since RL and L are fixed and it lags the voltage 

vector OV by an angle ƟL = tan-1 (XL/RL) as shown in the figure (b). The current IC through the 

capacitance is the vector OIC . It’s amplitude is maximum and equal to V/RC when XC is zero and 

it is in phase with the applied voltage V. When XC is increased from zero to infinity it’s amplitude 

decreases to zero and phase will be leading the voltage by 900. In between, the phase angle will 

be leading the voltage V by an angle ƟC = tan-1 (XC/RC). The locus of the current vector IC is a 

semicircle with a diameter of length equal to V/RC as shown in the figure below. Note that this 

is the same locus what we got earlier for the series RC circuit with XC varying except that here V 

is shown horizontally. 

Now, to get the locus of the total current vector OI we have to add vectorially the currents IC 

and IL . We know that to get the sum of two vectors geometrically we have to place one of the 

vectors staring point (we will take varying amplitude vector IC)at the tip of the other vector (we 

will take constant amplitude vector IL) and then join the start of the fixed vector IL to the end of 

varying vector IC. Using this principle we can get the locus of the total current vector OI by 

shifting the IC semicircle starting point O to the end of current vector OIL keeping the two 

diameters parallel. The resulting semicircle ILIBT shown in the figure in dotted lines is the locus 

of the total current vector OI. 
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Fig4.6 (b) : Locus of current vector I in Parallel LC circuit when XC is varied from 0 to ∞ 

 

Varying RL: 

 

The current IC through the capacitor is constant since RC and C are fixed and it leads the voltage 

vector OV by an angle ƟC = tan-1 (XC/RC) as shown in the figure (b). The current IL through the 

inductance is the vector OIL . It’s amplitude is maximum and equal to V/XL when RL is zero. Its 

phase will be lagging the voltage by 900. When RL is increased from zero to infinity it’s 

amplitude decreases to zero and it is in phase with the applied voltage V. In between, the phase 

angle will be lagging the voltage V  by an angle ƟL = tan-1 (XL/RL). The locus of the current vector 

IL is a semicircle with a diameter of length equal to V/RL. Note that this is the same locus what 

we got earlier for the series RL circuit with R varying except that here V is shown horizontally. 
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Fig. 4.7(a) parallel LC circuit with Internal Resistances RL (Variable) and RC (fixed) in series 

with L and C respectively. 

Now, to get the locus of the total current vector OI we have to add vectorially the currents IC 

and IL . We know that to get the sum of two vectors geometrically we have to place one of the 

vectors staring point (we will take varying amplitude vector IL)at the tip of the other vector (we 

will take constant amplitude vector IC)and then join the start of fixed vector IC to the end of 

varying vector IL. Using this principle we can get the locus of the total current vector OI by 

shifting the IL semicircle starting point O to the end of current vector OIC keeping the two 

diameters parallel. The resulting semicircle ICIBT shown in the figure in dotted lines is the locus 

of the total current vector OI. 
 

 
 

Fig 4.7(b) : Locus of current vector I in Parallel LC circuit when RL is varied from 0 to ∞ 

 

Varying RC: 
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Fig. 4.8(a) parallel LC circuit with Internal Resistances RL (fixed) and RC (Variable) in series 

with L and C respectively. 

 

The current IL through the inductor is constant since RL and L are fixed and it lags the voltage 

vector OV by an angle ƟL = tan-1 (XL/RL) as shown in the figure (b). The current IC through the 

capacitance is the vector OIC . It’s amplitude is maximum and equal to V/XC when RC is zero and 

its phase will be leading the voltage by 900 . When RC is increased from zero to infinity it’s 

amplitude decreases to zero and it will be in phase with the applied voltage V. In between, the 

phase angle will be leading the voltage V by an angle ƟC = tan-1 (XC/RC). The locus of the current 

vector IC is a semicircle with a diameter of length equal to V/XC as shown in the figure below. 

Note that this is the same locus what we got earlier for the series RC circuit with R varying 

except that here V is shown horizontally. 

 

Now, to get the locus of the total current vector OI we have to add vectorially the currents IC 

and IL . We know that to get the sum of two vectors geometrically we have to place one of the 

vectors staring point (we will take varying amplitude vector IC)at the tip of the other vector (we 

will take constant amplitude vector IL) and then join the start of the fixed vector IL to the end of 

varying vector IC. Using this principle we can get the locus of the total current vector OI by 

shifting the IC semicircle starting point O to the end of current vector OIL keeping the two 

diameters parallel. The resulting semicircle ILIBT shown in the figure in dotted lines is the locus 

of the total current vector OI. 
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Fig 4.8(b) : Locus of current vector I in Parallel LC circuit when RC is varied from 0 to ∞ 

 

 

Resonance: 

 

Series RLC circuit: 

The impedance of the series RLC circuit shown in the figure below and the current I through the 

circuit are given by : 

Z = R + jωL +1 /jωC  =  R + j ( ωL − 1/ωC) 

I = Vs/Z 
 

Fig 4.9: Series RLC circuit 

The circuit is said to be in resonance when the Inductive reactance is equal to the Capacitive 

reactance. i.e. XL = XC  or  ωL  =  1/ωC. (i.e. Imaginary of the impedance is zero) The frequency 

at which the resonance occurs is called resonant frequency. In the resonant condition when  XL 

= XC they cancel with each other since they are in phase opposition(1800 out of phase) and net 

impedance of the circuit is purely resistive. In this condition the magnitudes of voltages across 
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the Capacitance and the Inductance are also equal to each other but again since they are of 

opposite polarity they cancel with each other and the entire applied voltage appears across the 

Resistance alone. 

Solving for the resonant frequency from the above condition of Resonance : ωL = 1/ωC 

2πfrL  =  1/2πfrC 

f 2  =  1/4π2LC and f =  1/2π√LC 

In a series RLC circuit, resonance may be produced by varying L or C at a fixed frequency or by 

varying frequency at fixed L and C. 

 

Reactance, Impedance and Resistance of a Series RLC circuit as a function of frequency: 

 

From the expressions for the Inductive and capacitive reactance we can see that when the 

frequency is zero, capacitance acts as an open circuit and Inductance as a short circuit. Similarly 

when the frequency is infinity inductance acts as an open circuit and the capacitance acts as a 

short circuit. The variation of Inductive and capacitive reactance along with Resistance R and 

the Total Impedance are shown plotted in the figure below. 

As can be seen, when the frequency increases from zero to ∞ Inductive reactance XL (directly 

proportional to ω) increases from zero to ∞ and capacitive reactance XC (inversely proportional 

to ω) decreases from −∞ to zero. Whereas, the Impedance decreases from ∞ to Pure 

Resistance R as the frequency increases from zero to fr ( as capacitive reactance reduces from 

−∞ and becomes equal to Inductive reactance ) and then increases from R to ∞ as the 

frequency increases from fr to ∞ (as inductive reactance increases from its value at resonant 

frequency to ∞ ) 
 

 

Fig 4.10: Reactance and Impedance plots of a Series RLC circuit 

 

Phase angle of a Series RLC circuit as a function of frequency: 
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Fig4.11 : Phase plot of a Series RLC circuit 

 

The following points can be seen from the Phase angle plot shown in the figure above: 

 

• At frequencies below the resonant frequency capacitive reactance is higher than the 

inductive reactance and hence the phase angle of the current leads the voltage. 
• As frequency increases from zero to fr the phase angle changes from -900 to zero. 

• At frequencies above the resonant frequency inductive reactance is higher than the 

capacitive reactance and hence the phase angle of the current lags the voltage. 
• As frequency increases from fr and approaches ∞, the phase angle increases from zero 

and approaches 900 
 

Band width of a Series RLC circuit: 

The band width of a circuit is defined as the Range of frequencies between which the output 

power is half of or 3 db less than the output power at the resonant frequency. These 

frequencies are called the cutoff frequencies, 3db points or half power points. But when we 

consider the output voltage or current, the range of frequencies between which the output 

voltage or current falls to 0.707 times of the value at the resonant frequency is called the 

Bandwidth BW. This is because voltage/current are related to power by a factor of √ 2 and 

when we are consider  √ 2  times less it becomes  0.707.  But still these frequencies are called 

as cutoff frequencies, 3db points or half power points. The lower end frequency is called lower 

cutoff frequency and the higher end frequency is called upper cutoff frequency. 



MREC(A) 

 

 

 

r

r r 

r r

 
 

 

Fig 4.12: Plot showing the cutoff frequencies and Bandwidth of a series RLC circuit 

 

Derivation of an expression for the BW of a series RLC circuit: 

We know that BW = f2 – f1 Hz 
 

If the current at points P1 and P2 are 0.707 (1/√ 2) times that of I max ( current at the resonant 

frequency) then the Impedance of the circuit at points P1 and P2 is √ 2 R ( i.e. √ 2 times the 

impedance at fr ) 

But Impedance at point P1 is given by:   Z   =   √ R2 + (1/ω1C – ω1L )2   and equating this to  √  2 R 

 
ω2L – 1/ω2C   )2   and equating this to 

 
Equating the above equations (1) and (2) we get: 

1/ω1C – ω1L = ω2L – 1/ω2C 

Rearranging we get L( ω1+ ω2)    =    1/C [( ω1+ ω2)/ ω1ω2]     i.e  ω1ω2 = 1/LC 

But we already know that for a series RLC circuit the resonant frequency is given by ω 2 = 1/LC 

Therefore: ω1ω2    =    ω 2   ---- (3)          and          1/C   =  ω 2L ------  (4) 

Next adding the above equations (1) and (2) we get: 

1/ω1C – ω1L+ ω2L – 1/ω2C = 2R 

(ω2 – ω1)L + (1/ω1C – 1/ω2C) = 2R 

(ω2 – ω1)L + 1/C[(ω2 – ω1)/ω1ω2)  = 2R ------ (5) 

Using the values of ω1ω2 and  1/C  from equations (3) and (4) above into equation (5)  above  

we get: (ω2 – ω1)L + ω 2L [(ω2 – ω1)/ ω 2) = 2R 

we get : (1/ω1C) – ω1L = R ------ (1) 

Similarly Impedance at point P2 is given b 

√ 2 R we get: ω2L – (1/ω2C) = R 

y: Z = √ 
------ 

R2 + ( 

(2) 
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i.e. 2L (ω2 – ω1) =  2R i.e.   (ω2 – ω1) =   R/L and (f2 – f1) =   R/2πL ----------- (6) 

Or finally Band width BW = R/2πL ----------------------------------------------- (7) 

Since fr lies in the centre of the lower and upper cutoff frequencies f1 and f2 using the above 

equation (6) we can get: 
 

f1 = fr – R/4πL ------ (8) 

f2 = fr + R/4πL ------ (9) 

Further by dividing the equation (6) above by fr on both sides we get another important 

relation : (f2 – f1) / fr   =   R/2π fr L or BW / fr   =   R/2π fr L ------------------ (10) 

Here an important property of a coil i.e. Q factor or figure of  merit is defined as the ratio of  

the reactance to the resistance of a coil. 

Q  =  2π fr L / R --------------------------------- (11) 

Now using the relation (11) we can rewrite the relation (10) as 

Q  =  fr / BW ----------------------------------- (12) 

 

 
Quality factor of a series RLC circuit: 

The quality factor of a series RLC circuit is defined as: 

Q = Reactive power in Inductor (or Capacitor) at resonance / Average power at Resonance 

 

 
Reactive power in Inductor at resonance = I2XL 

Reactive power in Capacitor at resonance = I2XC 

Average power at Resonance = I2R 

Here the power is expressed in the form I2X (not as V2/X) since I is common through R.L and C  

in the series RLC circuit and it gets cancelled during the simplification. 

Therefore Q = I2XL / I2R = I2XC / I2R 

i.e. Q  =   XL / R  = ωr L/ R -------------------------------------- (1) 

Or Q  =   XC / R  = 1/ωr RC -------------------------------------- (2) 

From these two relations we can also define Q factor as : 
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Q = Inductive (or Capacitive ) reactance at resonance / Resistance 
 

Substituting the value of ωr = 1/√LC in the expressions (1) or (2) for Q above we can get the 

value of Q in terms of R, L,C as below. 
 

Q  =   (1/√LC ) L/ R = (1/R) (√L/C) 

 

 
Selectivity: 

Selectivity of a series RLC circuit indicates how well the given circuit responds to a given 

resonant frequency and how well it rejects all other frequencies. i.e. the selectivity is directly 

proportional to Q factor. A circuit with a good selectivity (or a high Q factor) will have maximum 

gain at the resonant frequency and will have minimum gain at other frequencies .i.e. it will have 

very low band width. This is illustrated in the figure below. 
 

 
 

 

Fig 4.13: Effect of quality factor on bandwidth Voltage Magnification at resonance: 

 

At resonance the voltages across the Inductance and capacitance are much larger than the 

applied voltage in a series RLC circuit and this is called voltage magnification at Resonance. The 

voltage magnification is equal to the Q factor of the circuit. This is proven below. 

If we take the voltage applied to the circuit as V and the current through the circuit at 

resonance as I then 

The voltage across the inductance L is: VL = IXL = (V/R) ωr L and 

The voltage across the capacitance C is: VC = IXC = V/R ωr C 

But we know that the Q of a series RLC circuit =  ωr L/ R  = 1/R ωr C 

Using these relations in the expressions for VL and VC given above we get 

VL =  VQ and VC = VQ 

The ratio of voltage across the Inductor or capacitor at resonance to the applied voltage in a 

series RLC circuit is called Voltage magnification and is given by 

Magnification  =  Q =  VL/V or  VC / V 
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Important points In Series RLC circuit at resonant frequency : 

 

• The impedance of the circuit becomes purely resistive and minimum i.e Z = R 

• The current in the circuit becomes maximum 

• The magnitudes of the capacitive Reactance and Inductive Reactance become equal 

• The voltage across the Capacitor becomes equal to the voltage across the Inductor at 

resonance and is Q times higher than the voltage across the resistor 

 

Bandwidth and Q factor of a Parallel RLC circuit: 

 

Parallel RLC circuit is shown in the figure below. For finding out the BW and Q factor of a 

parallel RLC circuit, since it is easier we will work with Admittance , Conductance and 

Susceptance instead of Impedance ,Resistance and Reactance like in series RLC circuit. 
 

 

 

Fig 4.14 : Parallel RLC circuit 

 

Then we have the relation: Y = 1/Z = 1/R + 1/jωL + jωC = 1/R + j ( ωC − 1/ωL) 

 

For the parallel RLC circuit also, at resonance, the imaginary part of the Admittance is zero and 

hence   the frequency at which resonance occurs   is given by:   ωrC  −   1/ωrL   = 0 . From this 

we get : ωrC = 1/ωrL and ωr = 1/√LC 

which is the same value for ωr as what we got for the series RLC circuit. 

 

At resonance when the imaginary part of the admittance is zero the admittance becomes 

minimum.( i.e Impedance becomes maximum as against Impedance becoming minimum in 

series RLC circuit ) i.e. Current becomes minimum in the parallel RLC circuit at resonance ( as 

against current becoming maximum in series RLC circuit) and increases on either side of the 

resonant frequency as shown in the figure below. 
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Fig 4.15: Variation of Impedance and Current with frequency in a Parallel RLC circuit 

 

Here also the BW of the circuit is given by BW = f2-f1 where f2 and f1 are still called the upper 

and lower cut off frequencies but they are 3db higher cutoff frequencies since we notice that at 

these cutoff frequencies the amplitude of the current is √2 times higher than that of the 

amplitude of current at the resonant frequency. 

The BW is computed here also on the same lines as we did for the series RLC circuit: 
 

If the current at points P1 and P2 is √ 2 (3db) times higher than that of Imin( current at the 

resonant frequency) then the admittance of the circuit at points P1 and P2 is also √ 2 times 

higher than the admittance at fr ) 

But amplitude of admittance at point P1 is given by: Y = √ 1/R2 + (1/ω1L - ω1C )2 and equating 

this to √ 2 /R we get 

1/ω1L −   ω1C =  1/R ---------------- (1) 

Similarly amplitude of admittance at point P2 is given by: Y = √ 1/R2 + (ω2C − 1/ω2L)2 and 

equating this to √ 2 /R we get 

ω2C −  1/ω2L =  1/R ---------------- (2) 

Equating LHS of (1) and (2) and further simplifying we get 

1/ω1L −   ω1C =   ω2C − 1/ω2L 

1/ω1L + 1/ω2L = ω1C  + ω2C 

1/L [(ω1 + ω2)/ ω1ω2]  =  (ω1 + ω2)C 

1/L C   =  ω1ω2 
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Next adding the equations (1) and (2) above and further simplifying we get 
 

1/ω1L – ω1C + ω2C − 1/ω2L = 2/R 

(ω2C – ω1C) + (1/ω1L – 1/ω2L) = 2/R 

(ω2 – ω1)C + 1/L [(ω2 – ω1)/ ω1ω2] = 2/R 

Substituting the value of ω1ω2 = 1/LC 

(ω2 − ω1)C + LC/L [(ω2 − ω1)] = 2/R 

(ω2 − ω1)C + C [(ω2 − ω1)] =  2/R 

2 C [(ω2 − ω1)] = 2/R 

Or [(ω2 − ω1)] = 1/RC 

From which we get the band width BW = f2-f1 = 1/2π RC 

Dividing both sides by fr we get : (f2-f1)/ fr =  1/2π fr RC ---------- (1) 

Quality factor of a Parallel RLC circuit: 

 

 
The quality factor of a Parallel RLC circuit is defined as: 

Q = Reactive power in Inductor (or Capacitor) at resonance / Average power at Resonance 

Reactive power in Inductor at resonance = V2/XL 

Reactive power in Capacitor at resonance = V2/XC 

Average power at Resonance = V2/R 

Here the power is expressed in the form V2/X (not as I2X as in series circuit) since V is common 

across R,L and C in the parallel RLC circuit and it gets cancelled during the simplification. 

Therefore Q = (V2/XL) / (V2/R) = (V2/XC) / (V2/R) 

i.e.   Q  =  R/ XL  = R /ωr L -------------------------------------------- (1) 

Or Q  =   R/ XC  = ωr RC -------------------------------------------- (2) 

From these two relations we can also define Q factor as : 

Q = Resistance /Inductive (or Capacitive ) reactance at resonance 
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Substituting the value of ωr = 1/√LC in the expressions (1) or (2) for Q above we can get the 

value of Q in terms of R, L,C as below. 
 

Q  =   (1/√LC ) RC = R (√C/L) 

Further using the relation Q = ωr RC ( equation 2 above ) in the earlier equation (1) we got in 

BW viz.   (f2-f1)/ fr =  1/2π fr RC  we get : (f2-f1)/ fr = 1/Q or Q = fr / (f2-f1) = fr / BW 

i.e. In Parallel RLC circuit also the Q factor is inversely proportional to the BW. 

 

 
Admittance, Conductance and Susceptance curves for a Parallel RLC circuit as a function of 

frequency : 

• The effect of varying the frequency on the Admittance, Conductance and Susceptance of a 

parallel circuit is shown in the figure below. 

• Inductive susceptance BL is given by BL = - 1/ωL. It is inversely proportional to the frequency ω 

and is shown in the in the fourth quadrant since it is negative. 

• Capacitive susceptance BC is given by BC = ωC. It is directly proportional to the frequency ω 

and is shown in the in the first quadrant as OP .It is positive and linear. 

• Net susceptance B = BC - BL and is represented by the curve JK. As can be seen it is zero at the 

resonant frequency fr 

• The conductance G = 1/R and is constant 

• The total admittance Y and the total current I are minimum at the resonant frequency as  

shown by the curve VW 
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Fig 4.16: Conductance, Susceptance and Admittance plots of a Parallel RLC circuit 

Current magnification in a Parallel RLC circuit: 

Just as voltage magnification takes place across the capacitance and Inductance at the resonant 

frequency in a series RLC circuit, current magnification takes place in the currents through the 

capacitance and Inductance at the resonant frequency in a Parallel RLC circuit. This is shown 

below. 

Voltage across the Resistance = V = IR 

Current through the Inductance at resonance IL = V/ ωr L = IR / ωr L = I . R/ ωr L = I Q 

Similarly 

Current through the Capacitance at resonance IC =  V/ (1/ωr C ) = IR / (1/ωr C ) = I(R ωr C) = I Q 

From which we notice that the quality factor Q = IL / I or IC / I and that the current through the 

inductance and the capacitance increases by Q times that of the current through the resistor at 

resonance. . 

Important points In Parallel RLC circuit at resonant frequency : 

• The impedance of the circuit becomes resistive and maximum i.e Z = R 

• The current in the circuit becomes minimum 

• The magnitudes of the capacitive Reactance and Inductive Reactance become equal 

• The current through the Capacitor becomes equal and opposite to the current through the 

Inductor at resonance and is Q times higher than the current through the resistor 
 

 

 

 


